
P L AT F O R MP L AT F O R M S E R I E S - V O L 1

Written By R A N DY C A RT E R

Hadoop
the Shard!
PureCloud is a true cloud platform,

but what does that really mean?

F O RWA R D

This eBook is written for anyone evaluating a prospective cloud application -

many vendors say an application is ‘in the cloud’ but what really works? What

should be different from traditional software? Which features should you look

for, and why are they important?

*By the way, the title of this book, ‘Hadoop the Shard’, is supposed to be a

joke - Hadoop is an open-source MapReduce tool from Apache, and sharding

is a method of splitting a large database for efficiency.

**But we just like the way it sounds!

***And be careful if you say this to an IT person.

TA B L E O F C O N T E N TS

02 What is built to scale?

03 What are microservices?

04 How/When/Why does it scale?

0 6 Public APIs, services contracts and security

0 8 Big Data - Hadoop and the MapReduce Revolution

0 9 Give me Continous Deployment, or give me Pain

10 Designed for Failure?

11 Invade the other Guys’ turf

14 Store Everything?

15 Measure Everything!

16 What is Interactive Intelligence PureCloud?

17 The PureCloud platform

A2A1A AN

BA

A B

What is ‘built to scale?’

Cloud systems are built to scale.
But it’s not done by copying an entire monolithic
software stack and adding virtualized servers. You
have to start building systems from objects that can
be massively paralleled. These paralleled objects,
derived from a Services Oriented Architecture (SOA)
design are called microservices; each containing a
bundle of communications, data operations, and
technology that can work independently on requests.
There are many types of scaling...

Scaling microservices instead of monolithic
applications gives you the ability to dynamically adjust
any area that needs more resources, so you can spin
up a lot of resources to refactor a database or run
a complex custom report without affecting normal
customer response speeds.

Fig 2.1 Vertical Scaling

Fig 2.2 Horizontal Scaling

Fig 2.3 Monolithic/Scaling

Make boxes bigger

Make many more boxes

02

Scale by adding resources, solve issues with
interdependencies as they are found - or by

duplicating and reconciling synced data

What are Microservices?

An approach to Microservices

· Modularity comes from componentized services

· Scaling tends to be horizontal

· Stateless whenever possible

· Easier to ramp-up new developers
 (or new features!)

· But... services can be harder to edit -
 When to add complexity for a new feature?
 When to split into separate microservices?
 (Strategy: build both and collect data)

Fig 3.1

03

How/When/Why does it scale?

Amazon and other cloud vendors sell you virtualized
servers with communications bandwidth and
some monitoring services. The better vendors also
have integrated load balancing with a distributed
architecture where all data is replicated across
multiple data centers. This gives the system several
options for grabbing whatever data it needs to
bring everything back to the state it was in before a
failure. Cloud services should not be dependent on
a single hard drive and whatever its processor and
connectivity limitations are.
Amazon and other cloud vendors sell you virtualized
servers with communications bandwidth and
some monitoring services. The better vendors also
have integrated load balancing with a distributed
architecture where all data is replicated across
multiple data centers. This gives the system several
options for grabbing whatever data it needs to
bring everything back to the state it was in before a
failure. Cloud services should not be dependent on
a single hard drive and whatever its processor and
connectivity limitations are.

Elastic Load balancing distributes requests to the
independent microservices and will detect and re-
startany requests that hang. This means that when
there is a failure, the system will scale and to recover
so quickly that users will not even notice! The same
elastic load balancing is used to roll out new features,
upgrades, and maintenance releases through the
pools of microservices, which means that service will
not be interrupted during updates. A well-architected
cloud system should NEVER need to go down for
maintenance!

04

What is Scaling?

Increased Increased
Resources = Performace

Fault Tolerance

Operational Costs diminish

as scale increases

Fig 4.1
LOAD

BALANCER

AUTOSCALING
GROUP

Scale-out
Scale-in
recover

Metrics
MONITORING

DNS

Fig 4.2
Scale Up

AMAZON CLOUDWATCH

Scale Up

Scale Down

Scale Down

PREDEFINED
SCALING
ACTIVITY

SCALE
DOWN RULE

SCALE UP
RULE

05

Public APIs, services contracts, and security…

In front of the pools of microservices are Public APIs that are the
interfaces for all our clients - browsers, desktop, tablet and phone apps.
Major systems have different APIs to give freedom to client developers
to optimize data updating based on user tasks.

The same Public API services are available to any authenticated
business process you want to build, with full developer documentation
online. APIs should be versioned and updated as new features are
added.

Public APIs function as a services contract between cloud services
and any web access; so you will always have reliable data if you are an
authenticated user.

For the vendor, the API services contract also gives cloud developers
the freedom to update internal technologies at any time as long as the
service continue to perform.

All data should be protected by layers of encryption - data encryption
(of course) plus all requests must be HTTPS with an internal encrypted

requesting user and org ID that cannot be spoofed.

0 6

secure

Legend

User ID
Org ID

ANALYTICS
API

PLATFORM
API

SEARCH
API

User ID
Org ID

DIRECTORY
API

BRIDGE
API

PUBLIC
API

Data for multiple
organizations

07

Fig 6.1 REST APIs and SECURITY
Cloud vendors also support ‘Regions’ that can restrict
your data to a specific country for privacy compliance.

INPUT HDFS

OUTPUT HDFS

HDFS
REPLICATION

Copy

Merge

REDUCE

Sort
DNS MAP

DNS MAP

DNS MAP

PART 0

HDFS
REPLICATION

Merge

REDUCE PART 1

Big Data - Hadoop and the MapReduce Revolution

This one is pretty easy - there has already been a
lot of coverage for the advantages of ‘Big Data’.
Every twenty years there is a fundamental change in
database technologies, from flat files > to relational
databases like SQL > and now to ‘noSQL’ running on
document and other storage databases.

noSQL and Hadoop (Hadoop is an open-source

MapReduce) are different because they are built to

scale. I nstead of loading giant tables into memory
and executing complex operations, MapReduce uses
a pool of simple and small resources to load scraps
of data and build ‘graphs’ of simple relationships - ‘is
it bigger than a breadbox?’ Mapped comparisons
build graphs of items that are bigger and smaller than
a breadbox, and then Reduce operations clean up

those graphs and find associations between graphs.

0 8

Fig 8.1 HADOOP MapReduce
Pools of MapReduce comparisons run all the time, or just

whenever there is a change

Code Done

Unit Tests

Integrate +
Deploy

Staging
Test/Use

Production

Give me Continuous Deployment, or give me Pain

Continuous Delivery is Agile, keeping teams
development productive. By breaking down complex
work into small iterations and enforcing that each
step must be completely shippable, Agile teams bite
off big changes in small steps, deploying each step
as they go. Continuous testing and feedback keeps
teams moving forward. Smaller feature changes
mean smaller tests, and smaller tests are easier to
add to test automation. Automated testing keeps
your development team from ever hearing “stop
development so we can manually test this.”

Cloud-based systems absolutely must have automated
tear-down and deployment for server updates.
You don’t want developers picking and choosing
dependencies for updates, you just want them to build
contained deployable features that can be rolled out
with little to no disruption.

For an Agile cloud organization, every build is a
deployment; we have hundreds of deployments going
on all day long just for developers to see their new
code at work. We constantly deploy new features into
production by rolling updates across pools of servers
with no interruptions for customers.

Agile ‘symptoms’ in organizations that
build cloud systems also include:

Resistance to manual processes in favor
of generated process and documentation
from their everyday tools .

Use of open source code for common
technologies to focus on useful features
Heterogenous code bases that support
‘best tool available’ approaches .

Willingness to try out competitive
solutions in staged or production
environments and then use data to drive
technology decisions.

0 9

Fig 9.1 AUTOMATION
Continuous Delivery requires a very polished updating

and testing approach.

Designed for Failure?

Things fail. Software. Hardware, Networks. People.

Your customers don’t care that you are having a
problem, they just need your organization to help
them. You should not have to care about your cloud
underlying technologies either.

It was wrong to believe it was possible to build big
complicated software systems that were reliable in the
first place. After spending forty years trying to build
around mean-time-between-failures with mountains
of testing it is time for another approach. Instead,
we need to design to recover from failure, and build
that recovery capability into every layer of a system
so it can recover gracefully from something breaking
unexpectedly.

With elastic load balancing and the right level of
monitoring you can detect when jobs ‘fall over’ and
hand off their tasks to another microservice.

With a cloud infrastructure you can dynamically
add and remove resources as needed. The recovery
process requires a spike in resources, but with
bandwidth access on demand, you can handle
recoveries smoothly without slowing everything else.

Finally, with a distributed architecture where all data
is replicated across multiple data centers your systems
have multiple options for recovering state information

even when major system failures happen.

Stateless Microservices
Performance Monitoring
Elastic Load Balancing
Distributed Data

Systems that can recover
before a human user will notice

+
+
+

=

“Everything fails,
 all the time”
 - Werner Vogels, CTO amazon.com

10

Fig 10.1 CHAOS MONKEY
But to test recovery you need to randomly knock

processes over all the time (so developers find and
fix state-recovery problems continuously) such as the

Simian Army ‘chaos’ tools

Invade the other Guys’ turf

Cloud systems should connect to data anywhere, and
be able to do business with themselves (by providing
Public API access to any useful data it crates or
collects).

Organizations have existing systems that support
them very well, so a good cloud system makes it easy
to connect to that data wherever it may be - in other
3rd-party Cloud Applications, or in on-premises data
center applications.

Connecting to data is a moving target, so tools
should be lightweight and easy to use and
understand.

You should be in control of syncing data. You should
be able to decide which directions data is synced
and which systems can update other systems.

11

Fig 11.1 BRIDGE INTEGRATIONS
Cloud Services can sync Data Cloud-to-Cloud with other
Public APIs, or Cloud-to-On-Premises via a secure local

server with local authentication.

Store Everything?

With Cloud services, storage is cheap and getting cheaper. With on-premises
servers, storage and backup was always a fixed capital expenditure that could
only be depreciated and controlled. The cost of on-premises storage meant that
software had to be designed to reduce storage - they had to decide which data
was most important to save and throw away the remainder.

Cloud services let you take advantage of the relentless drop in storage costs
over time. As one ofour software architects tells it “We’re a logging system
that happens to do a few transactions.” We save everything, including most
raw event requests, in long term storage. We use listeners on the event
request stream to hook out data needed for reports to save to separate reports
databases. This allows us to get smarter over time, and then go back and

‘refactor the history’ from the original events when we add new reports.

12

KAFKA

Event
Archiver

A
le

rt
s

St
at

s
ev

en
ts

Events
Archive

Discrete metrics
Data

Pipeline

Klaxon
(alerting) Storm

(Event Stream
 Processing)

Segment
detail

records

Events
Archive:
Glacier

timed aging to
long-term

storage

D
isc

re
te

 m
et

ric
s

&
 S

ta
ts

 e
ve

nt
s

O
pe

ra
tio

na
l e

ve
nt

s

Hadoop
(Batch

Analysis)

Lucene
indices

Segment
Indexer

Historical
Data

(Cassandra)

Bulk Historical
Data

Aggregate
Data (Druid)

API/Query
Service

Reporting
Engine

Report
metadata

Zoo
Keeper

Scheduler

Segment
relationships

Real-time
Model
(Redis)

Real-time
Stats

(Redis)

SES
DeliveryReport

Storage

Web
UI

Mobile
ClientsTableauR library Pentaho BIRT

iOS
Supervisor

Real-time
aggregate

metrics

Interaction Detail
Records (Elastic

Search)

Data
Pipeline

Predictive
Modeling Decisions

Public API

WFM

Billing

13

Fig 13.1 EVENTS QUEUES and REPORTING

Store Everything?

12

With Cloud services, storage is cheap and getting cheaper. With on-premises
servers, storage and backup was always a fixed capital expenditure that could only
be depreciated and controlled. The cost of on-premises storage meant that software
had to be designed to reduce storage - they had to decide which data was most
important to save and throw away the remainder.

Cloud services let you take advantage of the relentless drop in storage costs over
time. As one ofour software architects tells it “We’re a logging system that happens
to do a few transactions.” We save everything, including most raw event requests, in
long term storage. We use listeners on the event request stream to hook out data
needed for reports to save to separate reports databases. This allows us to get
smarter over time, and then go back and ‘refactor the history’ from the original
events when we add new reports.

KAFKA

Event
Archiver

A
le

rt
s

St
at

s
ev

en
ts

Events
Archive

Discrete metrics
Data

Pipeline

Klaxon
(alerting) Storm

(Event Stream
 Processing)

Segment
detail

records

Events
Archive:
Glacier

timed aging to
long-term

storage

D
isc

re
te

 m
et

ric
s

&
 S

ta
ts

 e
ve

nt
s

O
pe

ra
tio

na
l e

ve
nt

s

Hadoop
(Batch

Analysis)

Lucene
indices

Segment
Indexer

Historical
Data

(Cassandra)

Bulk Historical
Data

Aggregate
Data (Druid)

API/Query
Service

Reporting
Engine

Report
metadata

Zoo
Keeper

Scheduler

Segment
relationships

Real-time
Model
(Redis)

Real-time
Stats

(Redis)

SES
DeliveryReport

Storage

Web
UI

Mobile
ClientsTableauR library Pentaho BIRT

iOS
Supervisor

Real-time
aggregate

metrics

Interaction Detail
Records (Elastic

Search)

Data
Pipeline

Predictive
Modeling Decisions

Public API

WFM

Billing

Fig 8.1 EVENTS QUEUES and REPORTING

13

APM Mobile Servers Browser Platform InsightsSynthetics Analyze

New Relic
Cloud Database

Applications Browsers Servers PluginsMobile
Devices

NEW RELIC

Collect

Store

Measure Everything!

Another advantage of scalable resources is that you
can finally allocate for analyzing user and system
behaviors properly, without affecting response times.

There are many tools to choose for analyzing data -
for reporting issues automatically, and for checking
reliability of requests.

Ongoing analysis is critical to a constantly scaling
system with continuous deployment, and for
understanding your customers and their trends.

14

Fig 14.1 MONITORING for ANALYTICS

What is Interactive Intelligence PureCloud?

PureCloud has all of the features of the modern
Cloud Application covered above, plus many more
ideas under the covers. Agile continuous deployment
accelerates feature development, directed by
customers and the full history of Interactive
Intelligence strategic contact center leadership.
Each layer of PureCloud provides the foundation for
another:

Platform provides the core cloud services

Collaborate adds management of
organization data plus chat, document sharing, video
chat, profiles, rules-based groups, search and a variety
of ways to connect people

Communicate adds integrated telephony
features to Collaborate to become a unified
communications platform

Engage transforms Communicate into a
comprehensive contact center solution

All features are fully integrated
for a consistent unified experience.

15

Fig 15.1 LAYERS of PURECLOUD
Each layer of PureCloud provides the foundation for

another, with the platform at the center.

CUSTOMER
ENDPOINTS

Bridge
Server

Customer
Server

LEGEND

Secure Requests

PURECLOUD PLATFORM

CORE SERVICES

APPLICATION SERVICES

COMMUNICATION SERVICES

Directory

Configuration

Edge
Configuration

Search

User

Assignment

PUBLIC
INTERFACE

REST
API

Streaming
API

Webhooks

ANALYTICS &
REPORTING SERVICES

Scripting

Content
Management

Architect

Outbound
Dialing

Workforce
Management

Quality
Management

Chat

Fax

Phone

Voicemail

Event Stream
Processing

Metrics
Databases

API / Query
Engine

Faceted
Search

Batch
Processing

Predictive
Modeling

Reporting Alerting

16

The PureCloud platform

Links

Amazon Partner Portal

AWS Cloud Compliance

Interactive Intelligence is an Amazon Web Services

Advanced Technology Partner

Public API - PureCloud Developer Site

Get Started, REST APIs, Bridge Server Connectors,

Webhooks, full online documentation

PureCloud Platform

More detail on the PureCloud Cloud Platform

PureCloud Open Source and GitHub

PureCloud uses Open Source code and actively supports

the Open Source community, we also host example code for

integrations on GitHub

PureCloud Data Integrations

Cloud-to-Cloud, Cloud-to-On-Premises, Webhooks, Data

Dips, Screen Pops

Bridge On-Premises Data Connectors

Supported as of March 2016:

Microsoft Active Directory, Microsoft Exchange, Microsoft

Sharepoint, Oracle Service Cloud, Workday, UltiPro,

SalesForce, Interactive Intelligence CIC, Generic SQL

Connector

About Interactive Intelligence

Interactive Intelligence Group Inc. (Nasdaq: ININ) provides

software and cloud services for customer engagement,

unified communications and collaboration to help businesses

worldwide improve service, increase productivity and reduce

costs. Backed by a 21-year history of industry firsts, 100-plus

patent applications and more than 6,000 global customer

deployments, Interactive offers customers fast return on

investment, along with robust reliability and security. The

company gives even the largest organizations an alternative

to unproven solutions from start-ups and inflexible solutions

from legacy vendors. Interactive has been among Software

Magazine’s Top 500 Global Software and Services Suppliers

for 14 consecutive years, has received Frost & Sullivan’s

Company of the Year Award for five consecutive years, and

is one of Mashable’s 2014 Seven Best Tech Companies to

Work For. The company is headquartered in Indianapolis,

Indiana and has more than 2,000 employees worldwide. For

more information, visit www.inin.com.

©2016 Interactive Intelligence. All rights reserved.

�https://aws.amazon.com/partners/
�https://aws.amazon.com/compliance/
http://developer.mypurecloud.com/
https://help.mypurecloud.com/articles/about-the-purecloud-platform/
http://developer.mypurecloud.com/opensource/
https://help.mypurecloud.com/articles/about-integrations/
https://help.mypurecloud.com/articles/bridge-platform/
http://www.inin.com/

A B O U T T H E AU T H O R

F I N D U S O N

Ra n d o l p h C a r te r i s a p ro d u c t d e s i g n e r
a n d U X a rc h i te c t w i t h b ro a d h i s to r y
i n u s e r ex p e r i e n ce a n d e nte r p r i s e
a p p l i c a t i o n p l a n n i n g , s of t wa re d e s i g n
a n d p ro d u c t d eve l o p m e nt .

He h o l d s C M M I , RU P, Om n i t u re a n d
Sc r u mMa s te r ce r t i f i c a t i o n s . Ra n d y
h a s e a r n e d p ro d u c t d e s i g n awa rd s
f ro m Bu s i n e s sWe e k a n d ot h e r n at i o n a l
p u b l i c a t i o n s , a n d h a s d e s i g n e d fo r
Me d t ro n i c , A p p l e Co m p u te r, Pe a c ht re e
Sof t wa re , C i t i co r p , C h a s e Ma n h at t a n ,
Wa c h ov i a , Lu l u , B l u e s t r i p e , a n d
We bA s s i g n .

http://Randy Carter is a product designer and UX architect with broad history in user experience and enterprise application planning, software design and product development.
http://www.facebook.com/InIntelligence
He holds CMMI, RUP, Omniture and ScrumMaster certifications. Randy earned product design awards from BusinessWeek and other national publications, and has designed for Medtronic, Apple Computer, Peachtree Software, Citicorp, Chase Manhattan, Wachovia, Lulu, Bluestripe, and WebAssign.
http://Randy Carter is a product designer and UX architect with broad history in user experience and enterprise application planning, software design and product development.
http://twitter.com/IN_Intelligence
He holds CMMI, RUP, Omniture and ScrumMaster certifications. Randy earned product design awards from BusinessWeek and other national publications, and has designed for Medtronic, Apple Computer, Peachtree Software, Citicorp, Chase Manhattan, Wachovia, Lulu, Bluestripe, and WebAssign.
http://www.linkedin.com/company/interactive-intelligenc

